Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(14): eadl1026, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579007

RESUMEN

Perfluoroalkyl acids (PFAAs) are highly persistent anthropogenic pollutants that have been detected in the global oceans. Our previous laboratory studies demonstrated that PFAAs in seawater are remobilized to the air in sea spray aerosols (SSAs). Here, we conducted field experiments along a north-south transect of the Atlantic Ocean to study the enrichment of PFAAs in SSA. We show that in some cases PFAAs were enriched >100,000 times in the SSA relative to seawater concentrations. On the basis of the results of the field experiments, we estimate that the secondary emission of certain PFAAs from the global oceans via SSA emission is comparable to or greater than estimates for the other known global sources of PFAAs to the atmosphere from manufacturing emissions and precursor degradation.

2.
Chemosphere ; 358: 142129, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679180

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.

3.
Environ Sci Technol Lett ; 10(5): 418-424, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37181535

RESUMEN

Perfluoroalkyl acids (PFAAs) are widely distributed in the oceans which are their largest global reservoir, but knowledge is limited about their vertical distribution and fate. This study measured the concentrations of PFAAs (perfluoroalkyl carboxylic acids (PFCAs) with 6 to 11 carbons and perfluoroalkanesulfonic acids (PFSAs) with 6 and 8 carbons) in the surface and deep ocean. Seawater depth profiles from the surface to a 5000 m depth at 28 sampling stations were collected in the Atlantic Ocean from ∼50° N to ∼50° S. The results demonstrated PFAA input from the Mediterranean Sea and the English Channel. Elevated PFAA concentrations were observed at the eastern edge of the Northern Atlantic Subtropical Gyre, suggesting that persistent contaminants may accumulate in ocean gyres. The median ΣPFAA surface concentration in the Northern Hemisphere (n = 17) was 105 pg L-1, while for the Southern Hemisphere (n = 11) it was 28 pg L-1. Generally, PFAA concentrations decreased with increasing distance to the coast and increasing depth. The C6-C9 PFCAs and C6 and C8 PFSAs dominated in surface waters, while longer-chain PFAAs (C10-C11 PFCAs) peaked at intermediate depths (500-1500 m). This profile may be explained by stronger sedimentation of longer-chain PFAAs, as they sorb more strongly to particulate organic matter.

5.
Environ Sci Technol ; 56(16): 11172-11179, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35916421

RESUMEN

It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Exposición a Riesgos Ambientales , Fluorocarburos/análisis , Suelo , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(1): 228-238, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34907779

RESUMEN

The effective enrichment of perfluoroalkyl acids (PFAAs) in sea spray aerosols (SSA) demonstrated in previous laboratory studies suggests that SSA is a potential source of PFAAs to the atmosphere. In order to investigate the influence of SSA on atmospheric PFAAs in the field, 48 h aerosol samples were collected regularly between 2018 and 2020 at two Norwegian coastal locations, Andøya and Birkenes. Significant correlations (p < 0.05) between the SSA tracer ion, Na+, and PFAA concentrations were observed in the samples from both locations, with Pearson's correlation coefficients (r) between 0.4-0.8. Such significant correlations indicate SSA to be an important source of atmospheric PFAAs to coastal areas. The correlations in the samples from Andøya were observed for more PFAA species and were generally stronger than in the samples from Birkenes, which is located further away from the coast and closer to urban areas than Andøya. Factors such as the origin of the SSA, the distance of the sampling site to open water, and the presence of other PFAA sources (e.g., volatile precursor compounds) can have influence on the contribution of SSA to PFAA in air at the sampling sites and therefore affect the observed correlations between PFAAs and Na+.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Partículas y Gotitas de Aerosol , Atmósfera , Monitoreo del Ambiente , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 55(14): 9489-9497, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32859129

RESUMEN

Perfluoroalkyl acids (PFAAs) are persistent organic substances that have been widely detected in the global oceans. Previous laboratory experiments have demonstrated effective enrichment of PFAAs in nascent sea spray aerosols (SSA), suggesting that SSA are an important source of PFAAs to the atmosphere. In the present study, the effects of the water concentration of PFAAs on their size-resolved enrichment in SSA were examined using a sea spray simulation chamber. Aerosolization of the target compounds in almost all sizes of SSA revealed a strong linear relationship with their water concentrations (p < 0.05, r2 > 0.9). The enrichment factors (EF) of the target compounds showed no correlation with their concentrations in the chamber water, despite the concentrations varying by a factor of 500 (∼0.3 to ∼150 ng L-1). The particle surface-area-to-volume ratio appeared to be a key predictor of the enrichment of perfluoroalkyl carboxylic acids (PFCAs) with ≥7 perfluorinated carbons and perfluoroalkanesulfonic acids (PFSAs) with ≥6 perfluorinated carbons in supermicron particles (p < 0.05, r2 > 0.8), but not in submicron particles. The different enrichment behaviors of PFAAs in submicron and supermicron particles might be a result of the different production mechanisms of film droplets and jet droplets. The results suggest that the variability in seawater concentrations of PFAAs has little influence on EFs and that modeling studies designed to quantify the source of PFAAs via SSA emissions do not need to consider this factor.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aerosoles , Monitoreo del Ambiente , Fluorocarburos/análisis , Agua , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Process Impacts ; 20(7): 997-1006, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29869654

RESUMEN

To evaluate the relevance of different proposed sources of perfluoroalkyl acids (PFAAs) to air, their isomer patterns were analyzed in deposition samples collected from five geographical locations: two urban sites in China (>360 km from known operational fluorochemical manufacturing facilities), one remote marine site in the Azores archipelago and two Swedish sites representing urban and background conditions. Despite variable contributions from linear perfluorooctanoic acid (PFOA) in the samples, the pattern of branched PFOA isomers was similar to those of technical standards manufactured using electrochemical fluorination (ECF). This indicates that atmospheric fate processes have little influence on the isomer profiles of PFOA and that the relative contribution of PFOA manufactured using ECF (typically 20-26% branched isomers) and telomerization (typically one single linear isomer) can be determined in atmospheric deposition samples by analyzing the proportions of branched and linear isomers. In Chinese samples, branched isomers contributed 15-25% to the total loading of PFOA, indicating that the samples were dominated by ECF PFOA. Samples in the Azores had 8-10% contribution from branched PFOA isomers, indicating an approximately equal influence of ECF and telomer sources. Only three of the samples collected in Sweden displayed a quantifiable contribution from branched PFOA isomers (8-13% of overall PFOA loading in the samples). One branched PFNA isomer was observed in samples from the marine sites. Direct manufacturing discharges, transport of sea spray aerosols and degradation of precursors are all suggested to be contributing sources, albeit to different extents, to PFAAs in air at the different geographical locations where precipitation was sampled.


Asunto(s)
Contaminantes Atmosféricos/análisis , Caprilatos/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Azores , China , Ciudades , Geografía , Isomerismo , Suecia
9.
Environ Pollut ; 224: 779-786, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28279582

RESUMEN

Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Caprilatos/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Vidrio , Artefactos , Monitoreo del Ambiente/métodos , Gases
10.
Environ Pollut ; 188: 102-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24583389

RESUMEN

The aim of this study was to determine how dietary exposure to PFAAs has changed over the period when major production changes occurred. Archived samples (1999-2010) of eggs, milk and farmed rainbow trout were analyzed by ultra performance liquid chromatography coupled to tandem mass spectrometry. Statistically significant decreasing trends were observed for concentrations of perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) in fish (p < 0.002 and p < 0.032, respectively) and eggs (p < 0.001 for both compounds). Concentrations of PFOS in fish and eggs decreased by a factor of 10 and 40, respectively. In eggs there was also a statistically significant decreasing trend in concentrations of perfluorooctanoic acid (PFOA). The results of this study demonstrate that PFAA concentrations in food items from agricultural food chains and aquatic food chains close to sources respond rapidly to changes in environmental emissions. Implications for the overall understanding of human exposure are discussed.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Fluorocarburos/análisis , Contaminación de Alimentos/análisis , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Cromatografía Liquida , Dieta/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...